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1 The Gaussian

This goal of this document is to give an overview of the Gaussian from the
perspective of its use in physics. In the beginning things are built up in excruci-
ating detail with the goal that 2nd year undergrads can follow it. The concepts
in the following sections get increasingly complex and, while still worked out to
a great deal of detail, are targeted at a Graduate level.

1.1 The Single Variable Gaussian

The Gaussian function in it’s most basic form is

f(x) = e−ax2

(1)

for some real argument x. Most often we are interested in the integral of the
Gaussian over the entire real line, that is

I1 =

∫ ∞

−∞
dxe−ax2

. (2)

The trick to solving this integral is rather unusual. We begin by considering
instead the square of the integral.

I21 =

∫ ∞

−∞
dxe−ax2

∫ ∞

−∞
dye−ay2

(3)

and here we have used y as the variable in the second integral since the choice
of the variable in a definite integral is arbitrary. Since these integrals have no
cross-terms, we can rewrite the integral in the more compact form

I21 =

∫ ∞

−∞

∫ ∞

−∞
dxdye−a(x2+y2) (4)

and switch to polar coordinates:

I21 =

∫ 2π

0

∫ ∞

0

drdθre−ar2 . (5)
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We now have an integral that can be easily solved by making the substitution
u = ar2. We can implicitly differentiate u to give du = 2ardr so we have
rdr = du/2a and hence

I21 =
1

2a

∫ 2π

0

∫ ∞

0

dudθe−u = −π
a
e−u

∣∣∣∣∞
0

= −π
a
(0− 1) =

π

a
. (6)

Now we need only take the square root to arrive at our desired result

I1 =

∫ ∞

−∞
dxe−ax2

=

√
π

a
(7)

1.2 Getting more complicated

Notice that with eq. (7) we now have the ability to solve integrals of the form

I2 =

∫ ∞

−∞
dxe−a(x+µ)2+α (8)

where α and µ are constants. We can see this by first making the substitution
u = x+ µ

I2 =

∫ ∞

−∞
due−au2+α (9)

and then we can use the fact that ex+y = exey to rewrite the integral as

I2 = eα
∫ ∞

−∞
due−au2

(10)

where we have used the fact that eα is just a constant prefactor that can be
pulled outside the integral. Now, reading off the solution from eq. (7), we have

I2 = eα
√
π

a
. (11)

But what about e raised to the power of some arbitrary 2nd order polynomial?
Can we solve integrals of the form

I3 =

∫ ∞

−∞
dxe−(ax2+bx+c) (12)

too? As a matter of fact, we can. The trick is to make the integral look like the
one in eq. (8). This can be done by completing the square. We simply let d, e
and f be variables such that

d(x+ e)2 + f = ax2 + bx+ c. (13)

We can expand the left hand side and then equate coefficients of like powers

dx2 + 2dex+ de2 + f = ax2 + bx+ c (14)
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This gives us a system of equations

d = a (15)

2de = b (16)

de2 + f = c (17)

which can be solved to yield

d = a (18)

e = b/2a (19)

f = c− a(b/2a)2 = c− b2/4a (20)

thus
ax2 + bx+ c = a(x+ b/2a)2 + c− b2/4a (21)

and setting µ = b/2a and −α = c− b2/4a we have∫ ∞

−∞
dxe−(ax2+bx+c) =

∫ ∞

−∞
dxe−(a(x+b/2a)2+c−b2/4a)

=

∫ ∞

−∞
dxe−a(x+µ)2+α = eα

√
π

a

(22)

where we have used the solution from eq.(11) to arrive at the final equality.
Replacing back the variables a, b, and c we arrive at

I3 =

∫ ∞

−∞
dxe−(ax2+bx+c) = eb

2/4a−c

√
π

a
. (23)

This is the most general solution to a Gaussian of one variable.

1.3 The multivariate Gaussian

With the solution provided by eq. (23), we can now immediately solve integrals
of the form

I4 =

∫ ∞

−∞

∫ ∞

−∞
dxdyeax

2+bx+c+dy2+ey2+f (24)

by splitting up the exponent into an x and y part and then factorizing the
integral:

I4 =

∫ ∞

−∞

∫ ∞

−∞
dxdyeax

2+bx+cedy
2+ey2+f =

∫ ∞

−∞
dxeax

2+bx+c

∫ ∞

−∞
dyedy

2+ey2+f

(25)
and now the integral has been reduced to two integrals of the form (12) whose
solution is known viz.

I4 = eb
2/4a−cee

2/4d−f

√
π2

ad
=

π√
ad
eb

2/4a−c+e2/4d−f . (26)
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But what if now though we also had the cross term xy? Adding this cross term
gives the most general possible quadratic for 2 variables:

Q = ax2 + bx+ c+ dy2 + ey + f + gxy + hyx

If x and y commute then the final term is redundant, but if x and y represent
operators as is often the case when physicsts are using Gaussians, then the last
term must also be included. At this point our expressions are getting very long,
so it is convenient to introduce matrix notation to simplify things. First we
complete the squares for x and y so that Q may be written as

Q = a′(x− µx)
2 + b′(y − µy)

2 + g′(x− µx)(y − µy) + h′(y − µy)(x− µx) + c′

We can always expand this expression and enforce the requirement that the
coefficients of like powers must match to solve for the primed variables and the
µi’s. However, at present the exact relation is not relevant. With the quadratic
in this form we can introduces matrices to notationally simplify Q further:

x =

[
x
y

]

µ =

[
µx

µy

]
Σ−1 =

[
a′ g′

h′ b′

]
The choice for calling the 2x2 matrix Σ−1 rather than just Σ is chosen for

notational consistency for later. Now we may write Q as

Q = (x− µ)TΣ−1(x− µ) + c′

Which the reader can verify by expanding the following expression:

(x− µ)TΣ−1(x− µ) =
[
x− µx y − µy

] [a′ g′

h′ b′

] [
x− µx

y − µy

]
There are two benefits from using matrix algebra here. The first is that the
expression can easily be generalized to higher dimensions. The second is that it
makes determining the integral of multidimensional Gaussians much easier. This
is because there always exists a transformation that can be made to diagonalize
Σ−1 provided that det(Σ−1) ̸= 0. Diagonalization of Σ−1 allows eQ to be
written in a form whose integrals factorize and thus can be solved by the methods
discussed previously. Note that if x and y commute, Σ−1 is a normal matrix (it
commutes with its conjugate transpose). The diagonalization then is a unitary
transformation, so the Jacobian of the transformation will simply be unity.
With this in hand we can reason our way to what

∫∞
−∞ dxeQ must be based

on comparison with eq. (26). As is well known from linear algebra, a diagonal
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matrix has its eigenvalues for its diagonal. Labeling the variables as xi and their
corresponding eigenvalue as λi we have for a Gaussian of arbitrary dimension

I =

∫ ∞

−∞
...

∫ ∞

−∞
dx1...dxN exp[(x− µ)TΣ−1(x− µ)]

=

√
(2π)N

ΠN
1 λi

=

√
(2π)N

detΣ−1
=
√

(2π)N detΣ

(27)

where we have used the fact that the determinant is an invariant of the matrix
equal to the product of its eigenvalues and that for any matrix A, detA−1 =
1/detA provided detA ̸= 0.

1.4 Standard Statistical Notation

If the Gaussian is used as a probability distribution function (pdf) then it’s
integral over all x must be unity. That is, the probability of x being something
must be 100 percent. But the Gaussians we’ve looked at so far don’t integrate
to one. The remedy is to put a normalizing factor out front:

ρ(x) = Ae−a(x−µ)2 (28)

We can then carry out the integral of this pdf quite easily to arrive at∫ ∞

−∞
ρ(x) = A

∫ ∞

−∞
e−a(x−µ)2 = A

√
π

a
(29)

This integral must be 1 so

A

√
π

a
= 1 → A =

√
a

π
.

Finally for reasons that are beyond the scope of the discussion, we define a
new variable σ such that a = 1/2σ2 and we arrive at the ”standard normal
distribution”

ρ(x) =
1√
2πσ2

exp

[
−1

2

(
x− µ

σ

)2
]

(30)

µ and σ2 are called the mean and variance. The mean is a measure of where
the probability distribution is centered, and the variance is a measure of how
spread out the pdf is.

For a multivariate distribution, Σ is called the variance-covariance matrix.
The diagonal elements contain the variances of the random variables, and the
off diagonal elements contain the covariances.

The mean and variance are the first and second cumulants of the Gaussian
pdf respectively. This can most easily be shown using the cumulant generating
function, but this requires the Fourier transform. Therefore, the next section
introduces the Fourier transform of a Gaussian followed by a discussion on
generating functions and cumluants.

5



2 The Fourier Transform of the Gaussian

This next bit of machinery is especially important in quantum mechanics, al-
though as we shall see it has its uses in statistics as well. The Fourier transform
of a function f(x) is given by

F (k) =

∫ ∞

−∞
dx f(x)e−ikx (31)

Sometimes there is also a factor of 1/2π or 1/
√
2π in front of the integral. This

choice depends on the application. For quantum mechanics we shall use the
fully symmetric definition which includes the factor 1/

√
2π. In statistics the

above definition is often more appropriate.
I’m assuming the reader has some familiarity with the Fourier transform,

but I will mention some pitfalls that confused me about the transform when
first using it.

� What is k? We can tease out something about k by dimensional analysis. e
cannot be raised to the power of something with physical units. Therefore,
k must have the inverse of x’s units. If x has units of time, then k must
have units of 1/time or Hz. Thus k is a frequency. If x is a length, k
has units of 1/length e.g. wavelengths. In quantum mechanics k is also
divided by h̄ while x is a position so k will have units of J · s/m = kg ·m/s
so k is a momentum.

� Is k a variable or a constant? k is a variable, but the integral is over x
not k. So when evaluating the integral k can be treated as a constant, but
don’t let this trick you into thinking k is always a constant.

� How do you deal with the fact that the numbers are now complex rather
than strictly real? It is important to emphasize that x remains a real
number. Now however we are dealing with an integral in the complex
plane, and so the path of integration must be specified. Since x is a real
number, the bounds in eq. (31) tell us that this path is simply across the
entire real number line.

Now let’s look at the case that our function to be transformed, f(x), is a single
variable Gaussian.

F (k) =
1

σ
√
2π

∫ ∞

−∞
dx e−

1
2 (

x−µ
σ )

2−ikx (32)

This can be found by completing the square. We have

−1

2

(
x− µ

σ

)2

− ikx = − 1

2σ2
(x2 + 2(2ikσ2 − µ)x+ µ2).
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By using the system of equations (18) and recognizing a = 1, b = 2(ikσ2 − µ)
and c = µ, we have

−1

2

(
x− µ

σ

)2

− ikx = − 1

2σ2
(x2 + 2(2ikσ2 − µ)x+ µ2) (33)

= − 1

2σ2

[
(x− µ+ ikσ2)2 + µ2 − µ2 + 2ikµσ2 + σ4k2

]
(34)

= − 1

2σ2
(x− λ)2 − ikµ− σ2k2

2
(35)

where λ = µ− ikσ2. Returning to the Fourier transform,

F (k) =
1

σ
√
2π

∫ ∞

−∞
dx e−

1
2 (

x−µ
σ )

2−ikx

=
1

σ
√
2π

∫ ∞

−∞
dx exp

(
− 1

2σ2
(x− λ)2 − ikµ− σ2k2

2

)
=

1

σ
√
2π

exp

(
−ikµ− σ2k2

2

)∫ ∞

−∞
dx exp

(
− 1

2σ2
(x− λ)2

)
= exp

(
−ikµ− k2σ2

2

)
. (36)

So the Fourier transform of a Gaussian is also a Gaussian.

3 Gaussians in the wild

In this section I would like to focus on two main topics. The first is the statistical
under pinnings of the Gaussian which we shall explore from the perspective of
cumulants and how they relate to statistical mechanics. The second topic is on
how Gaussians arise in quantum mechanics from the perspective of Gaussian
wave packets.

3.1 The statistical features of a Gaussian

Recall that the nth moment of a function x is defined as

⟨xn⟩ =
∫
dxxnf(x).

There is a nice way to easily find these moments for a Gaussian. We simply need
to use the moment generating functions. In statistics, the moment generation
function of a pdf is by definition the Fourier transform of the pdf which for a
Gaussian is given by eq. (36). But why is the Fourier transform of a pdf its
moment generating function? The answer lies in the Taylor expansion of ez

which is

ez = 1 + z +
z2

2!
+
z3

3!
+ ... =

∞∑
n=0

zn

n!
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We can expand the e−ikx term in the Fourier transform to produce

F (k) =

∫
dxf(x)

(
1− ikx− k2x2

2
+

(−ik)3x3

3!
+ ...

)
=

∫
dxf(x)− ik

∫
dxxf(x)− k2

2

∫
dxx2f(x) + ...

= 1 + (−ik)⟨x⟩+ (−ik)2

2
⟨x2⟩+ ... =

∞∑
n=0

(−ik)n

n!
⟨xn⟩

(37)

which is a sum over all moments with each moment multiplied by (ik) raised
to the appropriate power. To extract the nth moment from this function, we
simply take n derivatives with respect to k, divide by (−i)n, and evaluate at k
= 0:

⟨xn⟩ = in
dn

dkn
(F (k))

∣∣∣∣
k=0

(38)

The reason for this is because taking n derivatives with respect to k causes the
term containing the nth moment to the leading order term. It will also be a
constant so evaluating at k = 0 causes all the higher order terms to vanish.
Finally there is still a factor of (−i)n out front that needs to be rid of so we
divide by (−i)n.

We can apply this to our Fourier transformed Gaussian, eq. (36), to find its
moments. The first two moments are:

⟨x⟩ = µ (39)

⟨x2⟩ = µ2 + σ2 (40)

which the reader is encouraged to verify. The details of deriving the previous
two equations have been skipped because there is in fact a faster method to
deriving moments using cumulants.

Cumulants are defined in a rather peculiar fashion. We begin by taking the
log of the moment generating function viz. lnF (k). Since this is a function of
the variable k, we can represent it as a power series so long as F (k) is analytic
in the region of interest:

lnF (k) =

∞∑
n=0

Ank
n. (41)

The problem is, we don’t know what the An coefficients are. To help us de-
termine this, and since I already know the final answer, we define a new set of
coefficients, Cn, related to An in the following way

An =
(−i)n

n!
Cn (42)

leading to

lnF (k) =

∞∑
n=0

(−ik)n

n!
Cn (43)
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which makes our cumulant generating function look extremely similar in form to
the moment generating function, eq. (37). In fact, this is taken as the definition
of the cumulants; the cumulants are the Cn coefficients.

The cumulants thus arise from a series expansion of the logarithm. But we
could also take the series expansion of F (k), eq. (37), and insert this directly
into the logarithm.

ln

( ∞∑
n=0

(−ik)n

n!
⟨xn⟩

)
= ln

(
1 +

∞∑
n=1

(−ik)n

n!
⟨xn⟩

)
(44)

we can then use the following Taylor expansion

ln(1 + ϵ) =

∞∑
n=1

(−1)n+1 ϵ
n

n
= ϵ− ϵ2

2
+
ϵ3

3
− ... (45)

to find an expansion of lnF (k) in terms of moments. For clarity, here we are
defining ϵ as

ϵ =

∞∑
n=1

(−ik)n

n!
⟨xn⟩.

We now have two different expansions of lnF (k): one in terms of the mo-
ments (45), the others in terms of the Cn coefficients (43). A subtlety to notice
here is that since ϵ is a sum over k beginning at first order, by looking at equa-
tion (45) we see there cannot be any terms of zeroth order in lnF (k). This
means we can change the index in eq. (43) to start at n = 1. We can now
equate the two sums and use the old trick that coefficients of like powers must
be the same to find a relation between the Cn coefficients and the moments.
As mentioned earlier, the Cn coefficients are the cumulants, which we will now
label as Cn = ⟨xn⟩c for symmetry with the notation for moments.

The expansion in terms of moments can be rather tricky to carry out in
practice, but it is instructive to show how this can be done to obtain the first
few cumulants.

We’ll start with the first cumulant ⟨x⟩c. We can see from equation (43) that
⟨x⟩c is the coefficient of k. Therefore we need to find all the terms in the moment
expansion that are first order in k. Clearly there is only one term since the ϵ2

and higher terms will all begin with at least 2nd order. Thus we have that

−ik⟨x⟩c = −ik⟨x⟩ → ⟨x⟩c = ⟨x⟩ (46)

Similarly, for the second cumulant, we need only the terms that are second order
in k and thus need only to consider the first two terms in eq. (45). From ϵ we
have the term

−k
2

2
⟨x2⟩.

From ϵ2 we have,

−ϵ
2

2
= −1

2

∞∑
n=1

∞∑
m=1

−1

2

(−ik)n(−ik)m

n!m!
⟨xn⟩⟨xm⟩ (47)
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and since the sums begin at one, the only second order term is

(−ik)(−ik)⟨x⟩⟨x⟩ = k2

2
⟨x⟩2.

Putting this all together we arrive at

−k2

2
⟨x2⟩c =

−k2

2
⟨x2⟩+ k2

2
⟨x⟩2

hence
⟨x2⟩c = ⟨x2⟩ − ⟨x⟩2. (48)

We can also find the moments in terms of cumulants. Inserting eq. (46) into
eq. (48) we can solve for the 2nd moment as

⟨x2⟩ = ⟨x2⟩c + ⟨x⟩c (49)

The application to the Gaussian is particularly elegant for we have

lnF (k) = −ikµ− σ2k2

2
(50)

which is conveniently already a series expansion in k, so we can immediately
read off the cumulants:

⟨x⟩c = µ (51)

⟨x2⟩c = σ2 (52)

and all higher cumulants vanish. And from this we can quickly obtain the first
two moments using eqs. (46) and (49), which can easily be verified to agree
with the moments derived previously.

3.2 Gaussians in Statistical Mechanics

The Gaussian comes up in statistical physics quite often. This is because distri-
butions in statistical physics are often of the form eβH where H is the system’s
Hamiltonian and β is a proportionality constant with units of inverse energy.
For a system of particles in no potential, the Hamiltonian takes the simple form
H =

∑
i p

2
i /2m and so the distribution becomes

p(pi) = eβ
∑

i p
2
i /2m

which we can identify as a multivariate Gaussian over the variables pi. Similarly,
if the particles are in a harmonic oscillator potential, U =

∑
imω

2x2i /2, then
we still have a Gaussian

p(pi, xi) = eβ
∑

i p
2
i /2m+β

∑
i mω2x2

i /2

specifically, a multivariate Gaussian over the pi’s and xi’s. I am of course
glossing over much of the details that go into deriving a distribution (such as
the partition function), but the point is that harmonic oscillator potentials are
very useful in statistical mechanics because it results in a Gaussian, which is to
say, something that’s tractable.
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3.3 Gaussians in Quantum Mechanics

In quantum mechanics, quite often the time evolution operator takes the form

T̂ (t) = exp (iβHt) (53)

where t represents time, Ĥ is the Hamiltonian again, and now β has units of
inverse energy multiplied by inverse time (e.g. 1/J · s). Here though Ĥ is an
operator. Despite being an operator however, the Hamiltonian of a free particle
is still quadratic in momentum. It takes the same form as in the statistical
mechanics case described above, with p simply raised to the roll of an operator p̂:
Ĥ = p̂2/2m (note there is no subscript i because here we are talking about only 1
particle rather than many). So we see that for a free particle the time evolution
operator is again a Gaussian. Similarly, raising x to the roll of an operator
we can see also that in quantum mechanics a harmonic oscillator potential will
produce a Gaussian.

The machinery built up for analyzing Gaussians also plays an excellent roll
in wave packets. Suppose we have a wave function in a Gaussian state at some
initial time t0

⟨x|ψ⟩ = ψ(x, t0) =
1

(2πσ2
x)

1/4
e−x2/4σ2

x (54)

This is actually the square root of the typical Gaussian form (30) since it is the
square of the wave function that is a probability distribution. To see this we
can check that this wave function is properly normalized:∫

dx|ψ|2 =

∫
dx

1√
2πσ2

x

e−x2/2σ2
x =

1√
2πσ2

x

·
√

π

1/(2σ2
x)

= 1. (55)

The wave packet’s momentum representation, ⟨p|ψ⟩, can be found by inserting
a complete set of position-space eigenstates:

⟨p|ψ⟩ = ψ̃(p) = ⟨p|
(∫

dx|x⟩⟨x|
)
|ψ⟩ = (2πh̄)−1/2

∫
dxe−ipx/h̄⟨x|ψ⟩ (56)

where we have used the relation ⟨p|x⟩ = (2πh̄)−1/2e−ipx/h̄. Notice that the
momentum-space representation is a Fourier transform of the position-space
representation! We know how to evaluate these using our old trick of completing
the square:

ψ̃(p) = (2πh̄)−1/2

∫
dxe−ipx/h̄ 1

(2πσ2
x)

1/4
e−x2/4σ2

x

=
(2πh̄)−1/2

(2πσ2
x)

1/4

∫
dx exp

[
−x2

4σ2
x

− ip

h̄
x

] (57)
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So here a = −1/4σ2
x and b = −ip/h̄ hence

ψ̃(p) =
1

(23π3h̄2σ2
x)

1/4

∫
dx exp

[
−
(
x+ 2σ2ip/h̄

)2
/4σ2

x − σ2
xp

2/h̄2
]

=
1

(23π3h̄2σ2
x)

1/4
e−σ2

xp
2/h̄2

∫
dx′e−x′2/4σ2

x

=
1

(23π3h̄2σ2
x)

1/4
e−σ2

xp
2/h̄2

√
π

1/(4σ2
x)

=

√
4πσ2

x

(23π3h̄2σ2
x)

1/4
e−σ2

xp
2/h̄2

=

(
24π2σ4

x

23π3h̄2σ2
x

)1/4

e−σ2
xp

2/h̄2

=

(
2σ2

x

πh̄2

)1/4

e−σ2
xp

2/h̄2

(58)

and by looking at the exponent, we can define a momentum-space variance such
that σ2

x/h̄
2 = 1/4σ2

p which leads to σ2
p = h̄2/4σ2

x which let’s us simplify our
representation even further to

⟨p|ψ⟩ = ψ̃(p) =
1

(2πσ2
p)

1/4
e−p2/4σ2

p (59)

which is also a Gaussian as we would expect. Notice that the position and
momentum uncertainties saturate the uncertainty relation

σxσp = σx

(
h̄

2σx

)
=
h̄

2

which means a Gaussian wave packet is a minimum uncertainty state.
Our position-space wave packet (54) is centered at x = 0. What if we want

a wave packet centered at some arbitrary position x0? Then we simply apply
the translation operator

T (x0) = e−ip̂x0/h̄ (60)

If we applied this to the position-space wave function, T will be exp
[
−ix0h̄ ∂

∂x

]
which looks like a terrible time. In momentum-space however we have

⟨p|ψx=x0⟩ = ⟨p|T (x0)|ψx=0⟩

= ⟨p|e−ip̂x0/h̄

(∫
dp′|p′⟩⟨p′|

)
|ψx=0⟩

=

∫
dp e−ip′x0/h̄⟨p|p′⟩⟨p′|ψx=0⟩

=
1

(2πσ2
p)

1/4
e−p2/4σ2

p−ipx0/h̄

(61)
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and now we need only to Fourier transform this back into position space!

⟨x|ψx=x0
⟩ = ⟨x|

(∫
dp |p⟩⟨p|

)
|ψx=x0

⟩

=
(2πh̄)−1/2

(2πσ2
p)

1/4

∫
dp eipx/h̄e−p2/4σ2

p−ipx0/h̄

=
1

(23π3h̄2σ2
p)

1/4

∫
dp e−p2/4σ2

p+ip(x−x0)/h̄

(62)

and now we complete the square with a = −1/4σ2
p and b = i(x− x0)/h̄ so

⟨x|ψx=x0
⟩ = 1

(23π3h̄2σ2
p)

1/4

∫
dp e−(p−2iσ2

p(x−x0)/h̄)/4σ
2
p−σ2

p(x−x0)
2/h̄2

=
1

(23π3h̄2σ2
p)

1/4

∫
dp′ e−p′2/4σ2

p−σ2
p(x−x0)

2/h̄2

=

√
4πσ2

p

(23π3h̄2σ2
p)

1/4
e−σ2

p(x−x0)
2/h̄2

=

(
24π2σ4

p

23π3h̄2σ2
p

)1/4

e−σ2
p(x−x0)

2/h̄2

=

(
2σ2

p

πh̄2

)1/4

e−σ2
p(x−x0)

2/h̄2

=
1

(2πσ2
x)

1/4
e−(x−x0)

2/4σ2
x

(63)

And now we have a wave packet that has been shifted to x0 in position space.
The reader is encouraged to Fourier transform this wave packet to momentum
space where it can be seen that this packet is still centered at1 p = 0. We must
go through the same procedures again using now the momentum translation
operator:

Tp(p0) = e−ip0x̂/h̄ (64)

And fortuitously, this is most easily applied in the position space representation:

⟨x|ψx=x0,p=p0
⟩ = ⟨x|Tp(p0)|ψx=x0

⟩ = ⟨x|e−ip0x̂

(∫
dx′ |x′⟩⟨x′|

)
|ψx=x0

⟩

= e−ip0x⟨x|ψx=x0
⟩

=
1

(2πσ2
x)

1/4
e−(x−x0)

2/4σ2
x−ip0x/h̄

(65)

We can now take the Fourier transform of this function to get the momentum
representation! But let’s not; for I fear the reader is at least equally as tired of

1The easy way to do this is to make the substitution x′ = x− x0 and then we can see this
is the same as the wave packet before it was space translated. Hence, the Fourier transform
after space translation is the same as the Fourier transform before space translation, and the
latter we’ve already seen is a momentum wave packet centered at p = 0.
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doing so as the author is. We could just have easily gone through the preceding
procedure starting instead with the momentum wave packet, first boosting to
p0 then x0. Thanks to the symmetry between position and momentum, the
result is simply the same as equation (65) but with x and p swapped. Thus we
have the position and momentum representation of a Gaussian wave packet at
arbitrary position and momentum as

ψx0,p0(x, t0) =
1

(2πσ2
x)

1/4
e−(x−x0)

2/4σ2
x−ip0x/h̄ (66)

ψx0,p0
(p, t0) =

1

(2πσ2
p)

1/4
e−(p−p0)

2/4σ2
p−ix0p/h̄. (67)

Now we have the general form of a Gaussian wave packet at some intial time
t0, but we would like to understand how these packets evolve over time for a
free particle. To this end we may apply the Schrödinger equation

H|ψ⟩ = p̂2

2m
|ψ⟩ = −ih̄ ∂

∂t
|ψ⟩ (68)

in either the momentum or position basis. Explicity the options look like:

=

∫
dx

(
−h̄2 ∂

2

∂x2
ψ(x, t)|x⟩

)
=

∫
dx

(
ih̄
∂

∂t
ψ(x, t)|x⟩

)
(69)

=

∫
dp

(
p2

2m
ψ̃(p, t)|p⟩

)
=

∫
dp

(
ih̄
∂

∂t
ψ̃(p, t)|p⟩

)
(70)

In both cases we can just project onto a particular position or momentum
to get the equations of motion for the wave functions:

−h̄2 ∂
2

∂x2
ψ(x, t) = ih̄

∂

∂t
ψ(x, t)

p2

2m
ψ̃(p, t) = ih̄

∂

∂t
ψ̃(p, t). (71)

For a free particle, the second one is easier to solve. It has the solution:

ψ̃(p, t) = e−
i
h̄

p2

2m tψ̃(p, t). (72)

So time-evolving the general Gaussian wave packet gives us:

ψ̃x0,p0
(p, t) =

1

(2πσ2
p)

1/4
e−(p−p0)

2/4σ2
p−ipx0/h̄− i

h̄
p2

2m t (73)
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